
Information Systems

1

By Courts Carter

RDBMS, part 3

SQL Basics
An Overview of the Language of RDBMS

tructured Query Language (always written as SQL and pronounced “sequel”) is the
de facto standard for interacting with all Relational Database Management Systems

(RDBMS). The rich set of instructions in SQL provides the power to query, add, modify,
and delete data in an amazingly flexible manner, regardless of RDBMS vendor. In part
its power is on offshoot of its simplicity. A very small language, SQL is declarative in-
stead of procedural. This means you use SQL to tell the database only what you want
done without prescribing how the DB should go about doing it.

This separation of function from implementa-
tion coupled with relational set theory, the
underpinning concept of RDBMS, means you
can accomplish a great deal in just a few terse
commands.

DML, DCL, DDL, DUH-HUH?
SQL is a specification and doesn’t belong to
any single company – it’s a standard developed
by a committee whose body members repre-
sent a wide range of disciplines. They merely
publish the SQL standard – it’s up to software
vendors to develop commercially viable prod-
ucts which comply with this spec. In general,
few companies have met the standard 100%,
but this is not necessarily bad. The committee’s
recommendations have, at times, lagged behind
the innovations released by RDBMS manu-
facturers; largely because a spec can remain
silent on contentious issues whereas users do
not. Thus faced with a user community de-
manding ever richer features the vendors
forged ahead, often in different directions, but
always leaving the SQL committee in the dust.
As a result today there are many subtle varia-
tions and flavors of SQL, but all share the
same core functionality.

Speaking of basic functionality… you’ve
probably heard “ODBC” bantered about. It
stands for Open Database Connectivity and its
only purpose is to be the go between for appli-
cations communicating with database engines.
That is, an ODBC “driver” is a piece of soft-
ware that understands the base set of standard
SQL calls and can translate these to the exact
calls implemented in Sybase, Oracle, Microsoft
Access, or whatever databases you are using.

ODBC was a standard put forth by Microsoft
to simplify connecting all these databases
which speak with accents.

While ODBC sounds (and is often) handy, it
also embodies only the most basic set of SQL
functionality and like we said, the standard is
way behind on addressing many pressing busi-
ness needs. Therefore, ODBC is less than
ideal. Ideal is using a native driver – a custom
piece of software “middleware” supplied by all
database vendors along with their database
server engines. Native drivers are smart and
fully optimized to run with the vendor’s par-
ticular flavor (extension) of SQL.

So now you probably want more acronyms
(this is computer-speak so we must proliferate
acronyms). Here ya go: SQL commands all fit
within one of three functional categories DCL,
DDL, or DML.

First, DCL is the Data Control Language. It
provides a means for the granting access privi-
leges to users and groups of users; it’s the secu-
rity layer built into an RDBMS. Next, DDL,
Data Definition Language, is the set of com-
mands used to create and modify the structure
of a database. It is used to create tables and
other structures found in the DB. Lastly is
DML, Data Manipulation Language. This is
really the only aspect you probably need to
learn. It’s the one that allows you to manipu-
late data. This article/presentation is all about
the data manipulation commands available to
us in SQL’s DML. This is easy because there
are only four. The are:

SELECT: analogous to read. It is used to query
(ask questions of) the database. Ex:

S

Information Systems

2

“Give me everyone who is currently an employee and has
green eyes or red hair”.

INSERT: add data to the DB.

UPDATE: change existing data in the DB.

DELETE: remove data from the DB.

We shall go over each of these in some detail, but before
doing this let’s decide what the database we are using looks
like.

Getting Started
What is the one topic everyone or nearly everyone can relate
to? Pets! Puppies, kittens, and Vietnamese potbelly pigs. So
let’s use a pet database as our example. If you need to role-
play pretend that you are the owner of a exclusive Beverly
Hills kennel. I’m going to jump directly in with a model
which has already been more-or-less normalized (if you are
not sure what that means consider yourself lucky, you’ve
obviously escaped our talk on normalization! Also, the DDL
for creating these three tables is included at the end of this
article and on the MIS website).

embodied_in

care_for

Pet
Pet_Id: Number(10,0) NOT NULL

PetType_Id: Number(4,0) NOT NULL (FK)
Owner_Id: Number(10,0) NULL (FK)
Name: Varchar2(65) NOT NULL
Birthdate: DATE NOT NULL
DeathDate: DATE NULL

PetType
PetType_Id: Number(4,0) NOT NULL

Description: Varchar2(65) NOT NULL

Owner
Owner_Id: Number(10,0) NOT NULL

Name: Varchar2(65) NOT NULL
StreetAddress: Varchar2(65) NOT NULL
City: Varchar2(65) NOT NULL
StateCode: CHAR(2) NOT NULL
Phone: Varchar2(20) NOT NULL

The Data Model
The data model shown here tells us that each Owner may
“care for” one or more Pets. And each Pet must be of ex-
actly one PetType. This second statement just means a Pet
cannot be “cat-dog” (part cat and part dog). Both of these
relationships are examples of one-to-many relationships.

²What are the Primary Keys for these tables?

² What are the Foreign Keys?

² Which columns are required? How were you able to tell?

The Data Model is amazing in its ability to lock you into one
way of doing or even thinking about things. It’s nigh on
impossible to do anything which the model does not sup-
port. Take a moment to consider what this model tells you
about the Business Rules. You should be able to answer the
following:

² How many Pets may a given Owner have?

² How many Owners may a Pet have?

² Can you have a Pet that is part dog and part cat?

² How many addresses and phone numbers may an Owner have?

² Will your kennel database be able to tell you whom the original
owner of a Pet was if the Pet is sold, such as the case of a racehorse? Is
this important to you?

Are these assumptions accurate to your business needs?

Often the underlying Data Model reveals itself in the GUI
front-end For example, an editor for Pet would probably
look something like the one shown here. Are the controls
what you expected? Can you see how they relate to the un-
derlying data structures?

Inserts
To get going let’s insert some data into these tables:

INSERT INTO Pet (Pet_Id, Name, Birthdate)
 VALUES (1, 'Gizmo', '03-Apr-93');

If we try this statement we get this error:

ORA-01400: cannot insert NULL into ()

The database is complaining because we failed to supply
some required data. We look at the model and realize that we
need to supply the Pet Type. So we try this:

INSERT INTO Pet (Pet_Id, Name, Birthdate,
PetType_Id)
 VALUES (1, 'Gizmo', '03-Apr-93', 1);

This time we get an “integrity constraint” error. Recall that
integrity constraints are rules the database uses to police the
quality of its data. In this case the rule is a referential integ-
rity constraint which essentially says that you cannot tell the
database to refer to something which doesn’t exist. Duh!

In looking at what might have gone wrong we realize that
not only is PetType required, but the PetType_Id column
appearing in the Pet table (a foreign key) refers to the Pri-
mary Key column on the PetType table (we can again see
this in the data model). So before we can insert a Pet we
need to populate the PetType table. Here it goes:

INSERT INTO PetType (PetType_Id, Description)
VALUES (1, 'Dog');

INSERT INTO PetType (PetType_Id, Description)
VALUES (2, 'Cat');

Information Systems

3

INSERT INTO PetType (PetType_Id, Description)
VALUES (3, ‘Mouse’);

INSERT INTO PetType (PetType_Id, Description)
VALUES (4, 'Monkey');

INSERT INTO PetType (PetType_Id, Description)
VALUES (5, 'Bird');

INSERT INTO PetType (PetType_Id, Description)
VALUES (6, 'Fish');

COMMIT;

² What would happen if we left off the Commit?

Now let’s try adding Gizmo again:

INSERT INTO Pet (Pet_Id, Name, Birthdate,
PetType_Id)
VALUES (1, 'Gizmo', '03-Apr-98', 1);

This time we got no error. But we need to Commit the in-
sert!

Commit ;

Why didn’t we need to specify an Owner like we did the
PetType? Great question! From the model we note that the
relationship from Owner to Pet does allow Nulls. Why”
yours is a benevolent kennel that accepts strays, so the
Owner of a particular pet may not be known to us.

Nulls
A Null is a very special database construct. It means “infor-
mation not given”. Maybe an example is the best way to il-
lustrate the concept of Nulls.

Let’s say we have OwnerAge in the Owner table. We, being
really diligent database designers, attach a constraint to this
column which only allows ages greater than 0 and less than
150 (we checked Guiness to make sure we covered the ex-
treme cases). Now what do we store in OwnerAge We don’t
know a person’s age? Answer: we allow nulls.

What this means is that we do not have the person’s age. We
cannot make any claim as to why we do not have the age. It
may be that the person refused to tell us or that we forgot to
ask.

Nulls are physically stored in a separate column than the data
they are attached to i.e. there is no magic number store in
Age that means “unknown”. As programmers we might have
said that age must be between 0 and 150, or -1 if we do not
know it. But consider what would have happened if we had
asked the database for all Owners under the age of 20. The
people with -1 in the age column would have been included
and this is wrong because we just don‘t know this informa-
tion. The actual answer would have excluded the unknown
agers.

Nulls are really powerful and often misinterpreted – make
sure you are never caught reading too much into missing
data!

Let’s continue adding data:

INSERT INTO Owner (Owner_Id, Name,
StreetAddress, City, StateCode, Phone)
VALUES (1, 'Bob Barker', '1234 Main Street',
'San Mateo', 'CA', ' 214 555 3424');

INSERT INTO Owner (Owner_Id, Name,
StreetAddress, City, StateCode, Phone)
VALUES (1, 'Fred Kuba', '542 3rd St.', 'San
Rafael', 'CA', '425 555 3822');

The first Insert statement worked fine, but the second line
receives an error (“ORA-00001: unique constraint vio-
lated”). Why? We violated the unique constraint on the
Primary Key for the Owner table. We tried to insert two
rows with the same value. 1, for Owner_id Have we messed
up the database’? No. We can rollback the entire transaction.

ROLLBACK ;

² How many statements got rolled back?

The unique constraint on the Primary Key protects the data-
base in a way akin to assign to a credit card company ensur-
ing that the same account number is not given to two differ-
ent customers.

Lets fix the prior statements and commit them to the DB
along with some more Pets (note that here the Owner_Id IS
Included):

INSERT INTO Owner (Owner_Id, Name,
StreetAddress, City, StateCode, Phone)
VALUES (1, 'Bob Barker', '1234 Main Street',
'San Mateo', ‘CA’,'415 555 3424');

INSERT INTO owner (Owner_Id, Name,
StreetAddress, City, StateCode, Phone)
VALUES (2, 'Fred Kuba', '542 3rd St.', 'San
Rafael', 'CA', '425 555 0822');

COMMIT;

INSERT INTO Pet (Pet_Id, Name, Birthdate,
PetType_Id, Owner_Id)
VALUES (2, 'Scrappy', '03-Apr-93', 1, 1);

INSERT INTO Pet (Pet_Id, Name, Birthdate,
PetType_Id, Owner_Id)
VALUES (3, 'Rufus', '28-May-90', 1, 1);

INSERT INTO Pet (Pet_id, Name, Birthdate,
PetType_Id, Owner_Id)
VALUES (4, 'Spot', '01-dec-95', 1, 2);

INSERT INTO Pet (Pet_Id, Name, Birthdate,
PetType_Id, Owner_Id)
VALUES (5, 'Spot', '05-Oct-92', 1, 1);

INSERT INTO Pet (Pet_Id, Name, Birthdate,
PetType_Id, Owner_Id)
VALUES (6, 'Candy', '05-Oct-88', 2, 1);

COMMIT;

Insert owner data until we have the following loaded into the
database.

Information Systems

4

Owners
Owner

_ Id
Name Street

Address
City State

Code
Phone

1 Bob
Barker

1234
Main
Street

San
Mateo

CA 415 555 3424

2 Fred Kuba 542 3rd
St.

San
Rafael

CA 415 555 0822

3 Joan Small 88 Pine
St Apt A

Los
Angeles

CA 213 555
9004

4 Courtney
Ay

193 43rd

Avenue
Miami FL 404 555 2001

5 Bird
Parker

62 156th
St

NY NY 201 555 1892

Pets
Pet_ Id Name Owner_

Id
Pet-

Type_
Id

Birthdate Death
date

1 Gizmo Null 1 03-Apr-98 Null

2 Scrappy 1 1 03-Apr-93 Null

3 Rufus 1 1 28-May-90 Null

4 Spot 2 1 01-dec-95 Null

5 Spot 1 1 05-Oct-92 Null

6 Candy 1 2 05-Oct-88 Null

We’ve now used the Insert statement is to insert new rows
into some tables. Format syntax of the insert statement:

Insert Into tablename [(columnlist)]

{Values (valuelist) | selectstatement }

Here are a few other samples of the Insert statement:

1. Insert a new record into the Students table using values
supplied:

Insert Into Students
VALUES ('12672656', 'Johnson Mary', '1313
Mockingbird Lane');

2. Insert records into the StudentHistory table taking records
from the Students table:

Insert Into StudentHistory
 Select *
 From Students
 Where ActiveRegistration = 'N';

Selects
Now that we have all this data in these tables let's ask the
database some questions

1. What are all of the pet names in the table’!

2. What are all of the d o g names? Cats’?

3. Which pets are named ‘Spot”’ Which pets have names
beginning with 'S'?

4. Which Pets belong to Bob Barker?

The Select statement is most commonly the one of interest
to the vast majority of users - they want reports. With this
statement you can do selections, projections, and joins. Se-
lection means getting a subset of the rows in a table (get all
of the data for all dogs in the table). Projection is selecting a
just the columns of data which you are interested in (what
are all of the pet names?). Join is the sexiest. It is the ability
to connect multiple tables via some common attribute (what
are all of the names of dog owners. i.e. get all of the dogs
from the Pet table and join this with the Owner table).

What are all of the pet names in the table?

SELECT Name
 FROM Pet;

Name

Gizmo
scrappy
Rufus
Spot
Spot
Candy
6 rows selected.

This is nice, but let’s clean it up by asking that these be re-
turned in ascending alphabetical order.

SELECT Name
 FROM Pet
 ORDER BY Name ASC;

Name

Candy
Gizmo
Rufus
Scrappy
Spot
Spot
6 rows selected.

What are all of the dog names? Cats?

SELECT Name
 FROM Pet
 WHERE PetType_Id= 1
 ORDER BY Name ASC;

Name

Gizmo
Rufus
Scrappy
Spot
Spot
5 rows selected.

SELECT Name
 FROM Pet
 WHERE PetType_Id = 2
 ORDER BY Name ASC;
Name

Candy

Information Systems

5

1 row selected.

Mice?

SELECT Name
 FROM Pet
 WHERE PetType_Id = 3
 ORDER BY Name ASC;

Name

0 rows selected.

Which pets are named ‘Spot“.’

SELECT Name, PetType_Id
 FROM Pet
 WHERE Name = 'spot';

Name PetType_Id
----- ----------------
0 rows selected.

Why did we get no rows back? The where clause said ‘spot’
whereas in the data we have ‘Spot’ - we need a case-
insensitive search. We’ll use the built-in function UPPER
which converts strings to all upper case letters.

SELECT Pet_Id, Name, PetType_Id
 FROM Pet
 WHERE UPPER(Name) = 'SPOT';

Pet_Id Name PetType_Id
------ ----- ----------
4 Spot 1
5 Spot 1
2 rows selected.

Which pets have names beginning with 'S'?

SELECT Pet_Id, Name, PetType_Id
 FROM Pet
 WHERE UPPER(Name) LIKE 'S%';

Pet_Id Name PetType_Id
------ ------- -----------
2 Scrappy 1
4 Spot 1
5 Spot 1
2 rows selected.

The ' %' is a wildcard. What other cool things are there to
know about the where clause?

The where clause represents one of the first filtering actions
that occurs during the execution of an SQL statement Using
the where clause we can build up complex selection criteria
by joining sub-expressions with relational operators. Here is
a list of options available for use in expressions associated
with the where clause:

Owners
Operator Type Syntax or sample

+, -, /,
*, %

Arithmetic
operator

<,>,=, Comparison

>=,<=, !=
or <>,
!>, !<

operators

AND, OR Relational op-
erators

(Age > 25) Or (JobType=
“technical”)

BETWEEN
<exp1>
AND
<exp2>

Range operator Age Between 35 And 45

IN
(a,b,c…)

Set operator PayCode IN (I. 7, 9 ,
12)

NOT Complement PayCode Not in (2, 6)

LIKE String matching
operator

CourseName LIKE "BCS_"

% String matching
wildcard

Matches 0 or more characters

_ String matching
wildcard

Matches any single character

[] String matching
wildcards

Matches any single char enclosed

[^] String matching
wildcards

Matches any single char not speci-
fied

The SQL select statement is probably the most used SQL
statement. As its’ name Implies. it is used to select informa-
tion from tables. The full syntax for the select statement is:

select [all|distinct] <select-list>

[into <target>]

[from <source>[holdlock][,...]]

[where <search-conditions>]

[group by [all] <aggregate-free-expression> [, .]

[having <search-conditions>]]

[order by {<column-name>[,...] | <column-
number>[,...] | <expression>}

[asc|desc]]

[compute <row-aggregate>(<column-name>)[,...]

[by <column-name>(,...]]

[for browse]

Which Pets belong to Bob Barker?

This question can be approached in several ways One way is
to first find out the Owner_Id for Bob Barker:

SELECT Owner_id
 FROM Owner
 WHERE Name = 'Bob Barker';

Owner_Id

1
1 row selected.

Now we could execute this query:

SELECT Pet_Id, Name, PetType_Id
 FROM Pet
 WHERE Owner_Id = 1;

Information Systems

6

Pet_Id Name PetType_Id
------ -------- ----------
2 Scrappy 1
4 Rufus 1
5 Spot 1
6 Candy 2
4 rows selected.

That got me my answer. but required two steps. In SQL you
can join two tables on a given column Before explaining that
take a look at this:

SELECT Pet.Pet_Id, Pet.Name, Pet.PetType_Id
 FROM Pet, Owner
 WHERE (Owner.Name = 'Bob Barker') AND
 (Pet.Owner_Id = Owner.Owner_Id);

Pet.Pet_Id Pet.Name Pet.PetType_Id
---------- -------- ----------------
2 Scrappy 1
4 Rufus 1
5 Spot 1
6 Candy 2
4 rows selected.

Joins allow you to link multiple tables based on shared values
in a given column or set of columns. You can even select
columns from any of the joined tables.

SELECT Pet.Pet_Id, Pet.Name,
 PetType.Description
 FROM Pet, PetType
 WHERE (Pet.Owner_Id = 1) AND
 (Pet.PetType_Id= PetType.PetType_Id);

Pet.Pet_Id Pet.Name PetType.Description
---------- -------- --------------------
3 Scrappy Dog
4 Rufus Dog
5 Spot Dog
6 Candy Cat
4 rows selected.

Combining the prior two queries we could write:

SELECT Pet.Pet_Id, Pet.Name,
 PetType.Description
 FROM Pet, PetType, Owner
 WHERE (Owner.Name = 'Bob Barker') AND
 (Pet.Owner_Id = Owner.Owner_Id) AND
 (Pet.PetType_Id= PetType.PetType_Id)
 ORDER BY Pet.Name;

Pet.Pet_Id Pet.Name PetType.Description
---------- --------- -------------------
6 Candy Cat
4 Rufus Dog
2 Scrappy Dog
5 Spot Dog
4 rows selected.

The database figures out how to search the tables and get
our result, we just ask what we want with little concern for
how the database gets it (sometimes. though. you will regret
not thinking about how hard the DB will need to work to get
your answer).

Keep trying select statements on your own. Start easy,
thinking of real world questions that you might be asked to

answer. Here is one to get you going: How many pets are
between 3 and 6 years old’?

Updates
The Update statement is used to modify values of columns
in a table. The syntax of the statement is:

Update tablename

Set assignmentstatement

Where whereclause

Here are a few samples of the Update statement:

1. Increase prices in the inventory table by 5%

Update Inventory
set Price = Price * 1.05

2. Set the number of credits to 5 if a course is over 80 hours:

Update CourseCredits
 Set Credits = 5
 WHERE CourseID IN
 (Select CourseId
 From Courses
 Where Hours> > 80);

Deletes
The Delete statement facilitates the removal of records from
tables. The syntax o f the statement is:

Delete From tablename

Where whereclause

Here are a few samples of the Delete statement:

1 Delete records from the Students table if they are from
Airdrie:

Delete FROM Student;
WHERE City Like 'Airdrie%';

2. Delete records from Students if they are not currently
registered in a course:

Delete From Students
Where StatusCode IN
(SELECT StatusCode
From StatusCodes
WHERE description <> "Active")

More:
Many-To-Many Relationships

Pet
Pet_Id

PetType_Id (FK)
Owner_Id (FK)
Name
Birthdate
DeathDate

Trick
Trick_Id

Name
Description

PetTrick
Pet_Id (FK)
Trick_Id (FK)

Pet
Pet_Id

PetType_Id
Owner_Id
Name
Birthdate
DeathDate

Trick
Trick_Id

Name
Description

Logical Model Physical Model

Information Systems

7

The Logical model shows a Many-To-Many relationship that
is each Pet is capable of performing many Tricks, or read the
other way any Trick can be performed by many (different)
Pets. This is obvious since many dogs know how to fetch,
many birds know how to say “hello”, and many cats... well.
many cats, er, bad example. But you get the idea.

The bad news is that it is physically impossible to implement
a many-to-many (think about why this is so, and even if you
were ‘clever’ and managed to do this it would probably vio-
late First Normal Form!).

So instead of giving up we use what is called a resolver table
which only contains the keys of the joined tables. Sometimes
the resolver table will have its own unique attributes, often
start and end dates.

Better Selects: Aggregate Functions, Grouping, and
Outer Joins
So what if we want to know some totals, averages, or just a
count? Of course we can do this,

-- how many pets are there in the database?
SELECT COUNT(*)
 FROM Pet;

COUNT(*)

6
1 row selected.

This is useful, but I can well imagine that an even more
common question would be “how many of each type of Pet
is in the database?”. To do this we could repeat the above
query using a WHERE clause that limits the search by Pet
Type, but there is a simpler way (note that it’s simple once
you understand it).

SQL allows you to group result sets into what? more sets or
subsets. This is done with the Group By clause.

SELECT B.Description Description,
 COUNT(A.Pet_Id) PetCount
 FROM Pet A, PetType B
 WHERE (A.PetType_Id= B.PetType_Id)
 GROUP BY Description
 ORDER BY Description;

Description PetCount
----------- -----------
Cat 1
Dog 5
2 rows selected.

This is looking good, but wait... there are 6 Pet Types de-
fined, but we only got 2 rows back in the above query Why is
this‘? It is because the tables are being glued together by
PetType Id so if no Pet of a particular Pet Type has been
defined in the Pet table this join will not have a row for it.
We can resolve this by using an Outer Join. An Outer Join
instructs the database to show all of the rows in one table
even if the other table does not reference it. I hope I explain
this better live than I just did in writing! Anyway here is what
the query would look like as an outer join (note that the SQL

standard for this is not consistently followed by all vendors,
but all of them do have some way of flagging which table is
to Included in its entirety. This example does this by placing
“(+)" following the lucky table!).

SELECT B.Description Description,
 COUNT(A.Pet_Id) PetCount
 FROM Pet A, PetType B
 WHERE (A.PetType_Id(+)= B.PetType_Id)
 GROUP BY Description
 ORDER BY Description;

Description PetCount
----------- ---------
Bird 0
cat 1
Dog 5
Fish 0
Monkey 0
Mouse 0
6 rows selected.

Okay, now I'll introduce one more construct. Just as the
WHERE clause works on single expressions the HAVING
clause operates on aggregate expressions. So if I wanted all
of the Pet Types with more than 3 Pets of that type one
could:

SELECT B.Description Description,
 COUNT(A.Pet_Id) PetCount
 FROM Pet A, PetType B
 WHERE (A.PetType_Id= B.PetType_Id)
 GROUP BY Description
 HAVING (COUNT(A.Pet_Id) > 3)
 ORDER BY Description;

Description PetCount
----------- ---------
Dog 5
1 row selected.

The real world application of these features is awesome: get-
ting all customers who have spent more than X dollars with
us. our top buyers by dollars spent the most profitable geo-
graphic region. sales by Product. etc.

Views
What more is there with DML? Well, if you find that you are
always doing the same table joins why not make a logical
table that does this for you? It’s called a view and it’ pretty
cool. You define a View with a select statement, and then
you select from the View just as you can from any other ta-
ble. A good candidate for a View is the join between Pet and
Pet Type:

CREATE OR REPLACE VIEW v_PetPlusType AS
 SELECT Pet.Pet_Id PetId,
 Pet.Name PetName,
 PetType.Description PetType
 FROM Pet, PetType
 WHERE(Pet.PetType_Id=PetType.PetType_Id);

Note that you cannot have an Order By clause in a View
definition (why?), but you may have one when you use the
View in a Select statement, such as to get a list of Pets sorted
by name.

SELECT * FROM v_PetPlusType ORDER BY PetName;

Information Systems

8

PETID PETNAME PETTYPE
----- ----------- ------------
6 Candy Cat
1 Gizmo Dog
3 Rufus Dog
2 Scrappy Dog
4 Spot Dog
5 Spot Dog
6 rows selected.

It's even possible to create views that allow updates, inserts
and deletes. Moreover, Views are really useful for hiding
sensitive data from other users. You could create a view on
an Employee table that hid the Salary column, then grant
select on this View to everyone outside of the Human Re-
sources department.

Also you can use Views to hide the ugliness of underlying
table structures or to protect developers from tables which
keep getting redefined. A View can be the API to the data-
base adding stability and better maintainability to your data-
base projects

Bibliography
SQL Resources
My favorite book which I haven’t read, but did skim is:

The Practical SQL Handbook by Bowman, Emerson and Darnov-
sky. Published by Addison-Wesley Developer’s Press. $39.95
380 Pages. Includes CD-ROM with a copy of Personal Sybase
and example tables.

These I just saw and they looked alright:

Understanding SQL, by Gruber. Published by Sybes. $26.95 445
pages.

LAN Times Guide to SQL by Groff and Weinberg. Published by
McGrall Hill. $29.95 610 pages.

Understanding the New SQL: A Complete Guide by Melton and
Simon. Published by Morgan Kaufman.$44.95 394 pages.

SQL Self-Teaching Guide by Stephenson and Hartwig. Published
by Wiley. $24 95 200 pages.

Teach Yourself SQL in 21 Days by Stephens et al. Published by
SAMS Publishing. $39.99 180 pages

A Guide to SQL published by Pratt. A textbook, essentially.

For the more advanced student I recommend:

SQL For Smarties: Advanced SQL Programming by the demi-god
Joe Celko. Published by Morgan Kaufman. $39.95 440 pages
of SQL puzzlers and solutions that exercise every ounce of
your SQL knowledge!

Other advanced:
A Guide to the SQL Standard. 4th edition. By Date and Danven

published by Addison-Wesley. $39.76 400 pages.

SQL, Instant Reference published by Sybex. $19.99 300 pages

Data Modeling Resources

For those really into data modeling (not for the beginner) I recom-
mend highly:

Data Model Patterns: Conventions of Thought by David C. Hay.
Published by Dorset House Publishing. $39.95 240 pages.
This book presents Data Models for commonly encountered
business problems and walks the reader through how they
might be designed and why. Really loved this book when It
came out - I’ve bought three copies and had them all stolen.
What higher praise is there’?

ERWin Methods Guide. This is part of the documentation that
ships with ERwin (the tool I use for doing my Data Models).
Its available as a pdf which I will gladly put out on the LAN
somewhere if there is any interest. Cost: f:ree! Okay. ERWin
costs over $3000, but I don’t think we have to pay to circulate
a piece of their documentation that has little to do with their
product.

Oracle Resources
Understanding the Oracle Server a true insiders guide to the Oracle

server presented for the newcomer-- really cool nuts and bolts
sections on how the logical abstraction and physical imple-
mentation really interact and how these are configured and
tuned by your DBA.

Building Intelligent Databases With Oracle PL/SQL Triggers and
Stored Procedures. second edition. I had the first edition and
found it really useful. The new one is fatter and has a new
cover -- it must be great. For the person with an okay under-
standing of SQL.

Oracle SQL High-Performance Tuning “why is my query so slow?”
“what is the effect of RAID5 on an RDBMS?”, “What is the
performance hit one incurs because of referential integrity ?”.
This book answers these and other pressing questions for the
really curious.

DDL for creating the tables
CREATE TABLE Owner (
 Owner_Id Number(10,0) NOT NULL,
 Name Varchar2(65) NOT NULL,
 StreetAddress Varchar2(65) NOT NULL,
 City Varchar2(65) NOT NULL,
 StateCode CHAR(2) NOT NULL,
 Phone Varchar2(20) NOT NULL,
 PRIMARY KEY (Owner_Id)
);

CREATE TABLE PetType (
 PetType_Id Number(4,0) NOT NULL,
 Description Varchar2(65) NOT NULL,
 PRIMARY KEY (PetType_Id)
);

CREATE TABLE Pet (
 Pet_Id Number(10,0) NOT NULL,
 PetType_Id Number(4,0) NOT NULL,
 Owner_Id Number(10,0) NULL,
 Name Varchar2(65) NOT NULL,
 Birthdate DATE NOT NULL,
 DeathDate DATE NULL,
 PRIMARY KEY (Pet_Id),
 FOREIGN KEY (PetType_Id)
 REFERENCES PetType,
 FOREIGN KEY (Owner_Id)
 REFERENCES Owner
);

Courts Carter works in the I.S department of Cendant Software and is
reachable at ccarter@cendantsoft.com. All of the scripts used in this
article are available for download at the MIS web site.

