
Information Systems

1

By Courts Carter &
David Rolston

RDBMS, part 2

Data Modeling
An Overview of Effective Database Design

nformation Engineering is the disciplined approach to dynamic requirements gather-
ing and software engineering. Utilizing Joint Application Development and RAD tech-

niques it pinpoints business process flow: Its end product is the Data Model. the work-
ing blue print of what will be in the database.

A Data Model is usually referred to an Entity-
Relationship Diagram - a graphic diagram de-
picting interrelationships between data ele-
ments.

Data Modeling
Database Design requires a rigorous design
methodology. To design a RDRMS you create
an Entity-Relationship (ER) diagram. In rela-
tional database parlance this discipline involves
the rules of normalization (Nixon was going to
Normalize relations with China remember?) So
when Codd formulated his rules for relational
database design he called them Normal forms.
A proper database design is “normalized”.

Forget about all the lower level details and
think about things at a more object oriented
level. This begins with 3 key ideas:

1. Identify things or objects of importance real
or imagined. Entities resolve to a single table
or set of tables. Entitles: People, Computers,
Offices, Countries, Books

2. For each entity identify its properties. These
become its attributes: “Book” has an
“Author”. Book has a “Title”. It has a “Pub-
lisher”, “Contents”, etc. Attributes are col-
umns.

3. Entities can be related to each other.
Authors write Books. Books are written by
Authors. Join Authors to Books where the
Author = “Stephen King” and you get a table
which includes rows for “Carrie”, “The Shin-
ing” and “Pet Cemetery”.

Normalization
Normal forms are an attempt to make sure that
you don’t destroy true data or create false data
in your database. One of the ways of avoiding
errors is to represent a fact only once in the

database, since if a fact appears more than
once one of the instances of it is likely to be an
error. A man with two watches can never be
sure what the correct time is. Or, succinctly:

One Fact In One Place

This process of table design is called normali-
zation. the various steps of which are described
by the following rules.

Rather than trying to fully explain the theoreti-
cal steps involved in normalizing a database I
will first state the rules and then quickly apply
them to a real-world example. First, however,
there is time for a soapbox and an explanation
couple of conventions.

I

Un-normalized

Relations

1stNormal Form

 2nd Normal Form

3rd Normal Form

Remove repeating
groups

Remove partial depend-
encies

Remove Transitive
dependencies

Information Systems

2

Soapbox: Primary Keys
In having done several database systems it has become an
unquestioned rule that I (nearly) always use surrogate keys.
It is often the case that there are one or two truly beguiling
candidate keys which have occasionally tempted me, none-
theless, I choose to create an internal surrogate key.

The classic example is Employee where two really good can-
didate keys nearly always exist: SSN and Employee ID.
While I am second to none in my trust in the government
and HR it is my belief that it is too easy to make a typo when
entering data and for this reason alone am of the mind that
the user should never get to directly enter a key.

If a credit agency enters an incorrect SSN one’s credit history
will be thrashed for months before it can all be sorted out.

Even on simple tables like a table States (Alaska, Arizona,
etc) I would not use the StateCode or abbreviation as the
key, because, again, data entry is too prone to errors and who
really knows whether MI is the official abbreviation for
Michigan or Minnesota anyway?

1st Normal Form (1 NF)
1st Normal Form (1NF) - Must be a table and each column
contains atomic (single) values. Consider phone table - You
could store city and state in a field called citystate (Memphis,
TN). This would be bad… how do you find all records for
TN? An index can’t be applied effectively because the
statecode is a string at the end of this field. With millions of
records, you are going to tablescan (top to bottom)

Also remove repeating groups. For example: one of our
systems has a Customer table with columns for day_phone,
night_phone. These are both "phone numbers". Also what
do you do to add Fax? How do you query for the phone#
555-9999?

1NF Rule: Remove repeated attributes or groups of
attributes and place them in new entities.

2nd Normal Form (2NF)
2nd Normal Form (2NF) - Must be 1NF and all attributes
depend on primary key. Simple primary key tables are al-
ready in 2NF. Composite keys may need to be separated
into one or more tables.

Rule: Remove attributes dependent on only part of the pri-
mary key.

3rd Normal Form (3NF)
3rd Normal Form (3NF) - If 2NF and has no "transitive
dependencies". All non-key attributes must be mutually in-
dependent.

From example above, SERVERNAME needs to move out
of login into its on table. Also HOMESERVER needs to
move out into its own table.

After 3NF things get obscure:

Boyce-Codd Normal Form (BCNF)
Boyce-Codd Normal Form (BCNF) - Enhances 3NF. Every
determinant (attribute which determines values of other at-
tributes) is a candidate (unique) key.

4th Normal Form (4NF)
4th Normal Form (4NF) - 3NF or BCNF and there are no
multi-valued dependencies. (dependent key returns multiple
records that have 2 or more attributes with the same value)

5th Normal Form (5NF)
5th Normal Form (5NF) - Too obscure to even describe in
this amount of time!

6th Normal Form (6NF)
6th Normal Form (6NF) - Even worse.

Kennel Case Study
Requirements
You are hired to design a database for a kennel that offers
veterinary services. After interviewing the owners and
employees of the kennel you are able to arrive at a short
list of requirements. Knowing that the budget is tight you
create two lists: one for features which must be incorpo-
rated into the design ("can't live withouts") and another for
those things which everyone agrees "would be nice" but
are not essential to be included in the first version of the
product.

Needs:
• want to track pet visits;
• send reminders and bills to pet owners;
• report on the average number of visits and the average

length of a Pet's stay;
• track any kind of animal appearing on the doorstep;

Would be nice features:
• maintain a complete history of measurements taken

each time an animal is brought in for an examination;

So we do some brainstorming with the client and come up
with our first entity, “Pet”. Here is what we know we want
to capture and a simple Entity-Relationship Diagram:

name
kind of animal
measurements (height, weight, etc.)
color
age or birthdate
owner
address
phone numbers
shots (i.e. vaccination history)
visit dates

Pet
Pet_Id

Name
Kind_of_animal
Age_or_Birthdate
Measurements
Color
Ow ner
Address
Phone_Numbers
Vaccination_History
Visit_Dates
License_Number

Information Systems

3

Take a moment to understand what this ERD is showing us:
the table’s name appears over the box, the Primary Key ap-
pears as the first column in the box, but set off from the
other columns via a horizontal line.

Right now our model is said to be in Zero-Normal Form.

1st Normal Form: Remove Repeating Groups

Need to remove those columns
which contain non-scalar data: i.e.
those that contain lists. A good clue
indicating that a column contains
non-scalar data is if the column
name ends in an “s” or is otherwise
plural. We have several: Measure-
ments, Phone_Numbers, and
Visit_Dates. You might miss it but
the History column is also array
data. We must replace this columns
with columns which may only hold
one fact (“one fact in one place,”
remember?).

We have a couple of options for correcting this problem and
thus getting the data into Second Nor-
mal Form: we can replace these “mega
columns” with discrete columns which
will hold exactly the number of facts we
need, or we can create separate tables to
store the data. As we shall see we have
hit upon another of my religious issues,
but first I’ll appear objective.

We could do the following: replace the
single Phone_Number column with
three Phone_Number columns named,
aptly, Phone_ Number1, Phone_
Number_2, and Phone_Number3. We
then do the same with Visits and Vac-
cination History. For Measurements
we can be more specific. If we did this
our ERD looks like the one at the top
of the next column.

Now, this would work, but it violates
some logical beliefs I hold dear. First, what is so magical
about three phone numbers? Why not four, one, or six?

The same question
may be applied to
Vaccination and Visit.
The number of col-
umns we have created
is arbitrary, so when
the inevitable hap-
pens, some Pet arrives
for their fifth visit,
what do we do? Call
the guy that designed
our database and have
them correct it? This
is great if you are the
data architect and

happen to be a contractor paid by the hour, but if I were the
users I would be annoyed – even if I was the one who sug-
gested that four Visits would be “more than enough”.

What we can instead do is remove the offending columns
and place them in separate tables as shown here:

Okay, this one requires quite a bit of explanation. Let’s look
at the Visit table. In it we see that the Primary Key (which is
shown above the line) is a Compound Key (recall the defini-
tion of a compound key as merely a key made up of more
than one column) in this case made up of the Pet_Id column
and the VisitDate. The Pet_Id column also happens to be a
Foreign Key (a Foreign Key is merely a column holds the
Primary Key which is foreign to the table). Before this be-
comes too confusing lets put some sample data into the ta-
bles:

Pet
Pet_Id Name Animal Age Owner

201 Spot Dog 6 Samantha

202 Snowflake Cat 4 Chris

203 Tibbles Horse 12 Lou

206 Sir Drool Stain Dog 7 Tim

Visit
Pet_Id Visit Date

201 23-May-91

201 5-Apr-88

203 23-Nov-96

206 16-Oct-91

203 12-Oct-86

201 12-Mar-97

206 1-Sep-76

201 16-Mar-97

As you can see the Pet with Pet_Id of 201 has visited on four
occasions, whereas Pet_Id has only visited twice.

By not trying to anticipate the maximum number of Visits
(thus locking the system into a number that may need to be
changed later) we have a more flexible design.

The same may be said of Phones and Vaccinations.

This type of relationship is called a one-to-many. In this case
it’s fairly clear from whence the name comes, each Pet may
have many Visits.

Reading Relationship Verb Phrases:
Relationships show how one Entity affects another. We usu-
ally create a verb phrase for these to make the nature of the
relationship clear.

Pet
Pet_Id

Name
Kind_of_animal
Age_or_Birthdate
Measurements
Color
Ow ner
Address
Phone_Numbers
Vaccination_History
Visit_Dates
License_Number

Visit
Pet_Id (FK)
VisitDate

PhoneNumber
Pet_Id (FK)
Phone_Number

Vaccination
Pet_Id (FK)
Vaccination_Date
Vaccination_Type

Pet
Pet_Id

Name
Kind_of_animal
Age_or_Birthdate
Height
Weight
Length
Color
Owner
Address
License_Number

Pet
Pet_Id

Name
Kind_of_animal
Age_or_Birthdate
Height
Weight
Length
Color
Owner
Address
Phone_Number1
Phone_Number2
Phone_Number3
Vaccination_Type1
Vaccination_Date1
Vaccination_Type2
Vaccination_Date2
Vaccination_Type3
Vaccination_Date3
Visit1
Visit2
Visit3
Visit4
License_Number

Information Systems

4

Each <entity 1> {may be/must be} <relationship name>
{one and only one/one or more} <entity 2>

For example:

Each Pet may be examined during zero, one, or more Visits.

Each Pet may be immunized with zero, one, or more Vacci-
nations.

We still have one problem in the ERD: Age or Birthdate.
There is no way to know which is stored in this column: the
age of the Pet or the Birthday. Columns like these are real
problems for database developers because they have to add
special code to decrypt what is being stored. These things
are often introduced by well-intentioned programmers com-
ing from an environment where every byte of storage had to
be accounted for and used efficiently. In the world of
RDBMS, though, this counting-bits mentality can really
cause some headaches. So either store the data in two sepa-
rate columns of choose one or the other as the official col-
umns and drop the other. In this case Birthdate is a better
choice.

2nd Normal Form: Partial Dependencies

Here the objective is to move columns which do not logically
depend upon the entity in question into a separate table. If
we look at our ERD we find that the Owner’s name and
address is in the Pet table. Even stranger, Phone Numbers
are being associated with the Pets and not the Owners. Also,
if an Owner has two Pets we would be forced to double en-
ter the Name and Address for the Owner. Bad, bad, bad!

The solution is moving the Owner data into its own table,
and of course, adding an Owner_Id.

Owner
Owner_Id

FirstName
LastName
Address

Pet
Pet_Id

Owner_Id (FK)
Name
Kind_of_animal
Birthdate
Height
Weight
Length
Color
License_Number

Vaccination
Pet_Id (FK)
Vaccination_Date
Vaccination_Type

PhoneNumber
Owner_Id (FK)
Phone_Number

Visit
Pet_Id (FK)
VisitDate

3rd Normal Form: Transitive Dependencies

What happens if we delete a Pet? Let us say that we delete
“Tibbles”, Pet_Id of 203. There would no longer be any
“Horses” in the database. What’s more, there would be no
way of telling that Horse was a valid “Kind of Animal”.
Likewise, if we delete a Vaccination for “Rabies” from the
database how can we be sure that the Vaccination Type of
Rabies would be anywhere in the database? The answer may

be that we simply do not care, but if we do we have experi-
enced a transitive dependency. A Transitive Dependency
arises when one piece of data depends upon another for its
inclusion in the database (it’s getting late and I am aware that
that made no sense, but I’ll revise these notes later).

What we do to eradicate this is store the dependent data in a
separate table, so for Vaccination we might do the following:

PhoneType
PhoneType_Id

Name

VaccinationType
VaccinationType_Id

Name
Cost

AnimalType
AnimalType_Id

Name
LifeExpectancy

Visit
Pet_Id (FK)
VisitDate

PhoneNumber
Owner_Id (FK)
Phone_Number
PhoneType_Id (FK)

Vaccination
Pet_Id (FK)
VaccinationType_Id (FK)
Vaccination_Date

Pet
Pet_Id

AnimalType_Id (FK)
Owner_Id (FK)
Name
Birthdate
Height
Weight
Length
Color
License_Number

Owner
Owner_Id

FirstName
LastName
Address

Some sample data for Vaccination Types and Phone Types
should help where the words are failing me.

Vaccination Type
Vaccination Type_Id Name

1 Rabies

2 Hoof-n-Mouth

3 Rocky Mountain Fever

Phone Type
Phone Type_Id Name

1 Home

2 Business

3 FAX

4 Pager

5 Modem

Making it cool
If I were making a really robust database with the complete
history of Pets I might decide that the DB should stored the
children, parents, siblings, etc. To track the parent of a litter
of puppies all I need to do is store the parent Dog’s Pet_Id
in the Pet table. I’d call this column ParentPaet_Id because I

Information Systems

5

couldn’t call it Pet_Id, that column name has already been
taken by the Primary Key column.

What I am describing here is a self-
referencing one-to-many relationship,
and it looks like the model shown.

Oracle actually provides a really cool,
though non-standard, mechanism for
traversing these type of tables because it
is so common and such a pain to do oth-
erwise. In most RDBMS one would need
to write a stored procedure, but Oracle
has this construct. Let’s say we want all

of the descendents of “Snowflake”, Pet_Id of 202. Well, we
can write one SQL statement to get this (I know this doesn’t
belong here, but so what?):

SELECT Pet_Id, Name, Level
 FROM Pet
 START WITH Pet_Id = 201
 CONNECT BY ParentPet_Id = PRIOR Pet_Id;

“Level” is a pseudo column Oracle provides to tell you how
many generations (in this case) deep you have gone. You
would get back a result set beginning with Snowflake (Level
of zero) and ending whenever there are no more children. If
you only want a fixed number of descendents you may spec-
ify the Level to stop with in the WHERE clause. This same
mechanism also works going the other way, in this case it
would give you all of the ancestors of Snowflake.

Pet
Pet_Id

ParentPet_Id (FK)
Name
Birthdate
Height
Weight
Length
Color
License_Number

